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1 Introduction

Conformal invariant quantum field theories in four dimensions are interesting both theoret-

ically and for potential phenomenological applications. While perturbatively finite super-

symmetric QFTs have been known for a long time [1] and a vast zoo of non-perturbative

supersymmetric examples was discovered during the duality revolution of the 1990s, only

few non-supersymmetric, interacting CFTs in d = 4 are presently known.1

The AdS/CFT correspondence [3–5] seems to offer an easy route to several more

examples. A well-known construction [6, 7] starts by placing a stack of N D3 branes

at an orbifold singularity R
6/Γ. In the decoupling limit one obtains the duality between an

orbifold of N = 4 SYM by Γ ⊂ SU(4)R and Type IIB on AdS5 × S5/Γ. Supersymmetry is

completely broken if Γ 6⊂ SU(3), but since the AdS factor of the geometry is unaffected by

the orbifold procedure, conformal invariance appears to be preserved, at least for large N .

However, in the absence of supersymmetry one may worry about possible instabilities [8].

On the string theory side of the duality, one must draw a distinction [9] according to

whether the orbifold action has fixed points or acts freely on S5. If Γ has fixed points,

there are always closed string tachyons in the twisted sector. If Γ acts freely, the twisted

strings are stretched by a distance of the order of the S5 radius R; the would-be tachyons

1Large N Bank-Zaks [2] fixed points come to mind.
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are then massive for large enough R (strong ’t Hooft coupling λ), but it is difficult to say

anything definite about small R.

On the field theory side, a perturbative analysis at small λ reveals that conformal

invariance is always broken, regardless of whether the orbifold is freely acting or not [10, 11].

The inheritance arguments of [8, 12] guarantee that the orbifold theory is conformal in

its single-trace sector: at large N , all couplings of marginal single-trace operators have

vanishing beta functions. However, even at leading order in N , there are non-zero beta

functions for double-trace couplings of the form

δS = f

∫

d4xOŌ , (1.1)

where O is a twisted single-trace operator of classical dimension two [9–11, 13, 14]. Confor-

mal invariance could still be restored, if all double-trace couplings fk had conformal fixed

points. It turns out that this is never the case in the one-loop approximation [10, 11]. So for

sufficiently small λ, all non-supersymmetric orbifolds of N = 4 break conformal invariance.

It is natural to associate this breaking of conformal invariance with the presence of

tachyons in the dual AdS theory [10]. By an AdS tachyon, we mean a scalar field that

violates the Breitenlohner-Freedman bound [15]:

For a tachyon , m2 < m2
BF = − 4

R2
. (1.2)

One is then led to speculate [10] that even for freely acting orbifolds, some of the twisted

states must become tachyonic for λ smaller than some critical value λC . The conjectural

behavior of m2(λ) for a “tachyon” in a freely acting orbifold theory is shown in figure 1. A

related viewpoint [9] links the tachyonic instability in the bulk theory with a perturbative

Coleman-Weinberg instability in the boundary theory. From this latter viewpoint how-

ever, it seems at first that whether Γ is freely acting or not makes a difference even at weak

coupling [9]: if Γ has fixed points, the quantum-generated double-trace potential destabi-

lizes the theory along a classical flat direction; if Γ is freely acting, the symmetric vacuum

appears to be stable, because twisted operators have zero vevs along classical flat directions.

In this paper we make the correspondence between double-trace running and bulk

tachyons more precise. Taken at face value, an AdS5 tachyon would appear to be dual to

a boundary operator with complex conformal dimension of the form

∆ = 2 ± i b , b =
√

|m2R2 + 4| . (1.3)

We are going to find a formal sense in which this is correct, and a prescription to compute

the tachyon mass m2(λ) from the boundary theory. In principle this prescription could be

implemented order by order in λ and allow to test the conjectural picture of figure 1. We

also show that the perturbative CW instability is present if and only if conformal invariance

is broken, independently of the tree-level potential, and thus independently of whether the

orbifold is freely acting or not.

Our analysis applies to the rather general class of large N theories “conformal in their

single-trace sector”. We consider non-supersymmetric, classically conformal field theories

– 2 –
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2

∼ λ

λC

Figure 1. Proposal for the qualitative behavior of a “tachyon” mass in a freely acting orbifold,

as a function of the ’t Hooft coupling λ. The field is an actual tachyon (violating the BF stability

bound) for λ < λC . See section 4.1 for more comments.

with lagrangian of the standard single-trace form L = N Tr [. . . ]. Denoting collectively

by λ the single-trace couplings that are kept fixed in the large N limit,2 we assume that

βλ ≡ µ ∂
∂µλ = 0 at large N . Generically however, perturbative renormalizability forces

the addition of double-trace couplings of the form (1.1), where O ∼ Trφ2 is a single trace

operator of classical dimension two. Thus it is essential to compute the double-trace beta

functions βf to determine whether or not conformal invariance is maintained in the quan-

tum theory. Our main technical results are expressions for βf , for the conformal dimension

∆O and for the effective potential V(ϕ), valid to all orders in planar perturbation theory.

Besides orbifolds of N = 4 SYM, other examples of large N theories conformal in

their single-trace sector are certain non-supersymmetric continuous deformations of N = 4

SYM [16–18]. One can also contemplate theories with adjoint and fundamental matter,

where the instability arises in the mesonic sector and is dual to an open string tachyon. A

detailed analysis of such an “open string” example will appear in a forthcoming paper [19].

Somewhat surprisingly, conformal invariance turns out to be broken in all concrete cases of

non-supersymmetric “single-trace conformal” theories that have been studied so far. There

is no a priori reason of why this should be the case in general. A more systematic search

for conformal examples is certainly warranted.

We should also mention from the outset that independently of the perturbative in-

stabilities which are the focus of this paper, non-supersymmetric orbifold theories may

exhibit a non-perturbative instability akin to the decay of the Kaluza-Klein vacuum [20]

(see also [21]). For a class of freely acting Z2k+1 orbifolds, at large coupling λ the decay-rate

per unit volume scales as [20]

Γdecay ∼ k9e−N2/k8
Λ4 , (1.4)

where Λ is a UV cut-off. This instability is logically distinct and parametrically different

from the tree-level tachyonic instability. It is conceivable that a given orbifold theory may

be stable in a window of couplings λC < λ < λKK intermediate between a critical value

2 In the example of an orbifold of N = 4 SYM, λ = g2
YMN is the usual ’t Hooft coupling.
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(a) (b) (c)

λN

λN

1
N

1
N

N Trφ4 (Trφ2)2

Figure 2. One-loop contributions to the effective action from a diagram with two quartic vertices.

Each vertex contributes a factor of λN and each propagator a factor of 1/N , as indicated in

(a). There are two ways to contract color indices: a single-trace structure (b), or a double-trace

structure (c).

λC where the “tachyon” is lifted (figure 1) and another critical value λKK where the the

non-perturbative instability sets in.

Multitrace deformations in the context of the AdS/CFT correspondence have been

investigated in several papers, beginning with [22–26].

The paper is organized as follows. In section 2 we study the renormalization of a

general field theory conformal in the single-trace sector and derive expressions for βf and

∆O valid to all orders in planar perturbation theory. In section 3 we study the behavior

of the running coupling f(µ) and the issue of stability of the quantum effective potential

V(ϕ). In section 4 we make our proposal for the computation of the tachyon mass m2(λ)

from the dual field theory. We illustrate the prescription in a couple of examples and make

some remarks on flat directions in freely acting orbifold theories. We conclude in section 5

discussing a few open problems.

2 Renormalization of double-trace couplings

We are interested in large N , non-supersymmetric field theories in four dimensions. We

start with a conformally invariant classical action of the standard single-trace form.

Schematically,

SST[N,λ] =

∫

d4xN Tr [(Dφ)2 + ψDψ + (DA)2 + λφ4 + . . . ] , (2.1)

where φ, ψ, A are N ×N matrix-valued scalar, spinor and gauge fields. We have written

out the sample interaction term NλTrφ4 to establish our notation for the couplings: we

denote collectively by λ the couplings in SST that are kept fixed in the large N limit.

Generically, the action (2.1) is not renormalizable as it stands, because extra double-

trace interactions are induced by quantum corrections. It is an elementary but under-

appreciated fact that double-trace renormalization is a leading effect at large N . For

– 4 –
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example, consider the contribution to the effective action from one-loop diagrams with two

quartic scalar vertices (figure 2). Schematically,
∫

d4xN λTrφ4(x)

∫

d4y N λTrφ4(y) ∼ λ2 log Λ

∫

d4z
[

N Trφ4 + (Trφ2)2
]

. (2.2)

The single-trace term N Trφ4 renormalizes a coupling already present in the action (2.1).

The double-trace term (Trφ2)2 forces the addition of an extra piece to the bare action,

S = SST + SDT , SDT =

∫

d4x f0 (Trφ2)2 , f0 ∼ λ2 log Λ . (2.3)

It is crucial to realize that SST and SDT are of the same order in the large N limit, namely

O(N2). For SST, one factor of N is explicit and the other arises from the trace; for SDT,

each trace contributes one factor of N .

In the following, we specialize to theories for which the single-trace couplings do not

run in the large N limit, βλ = µ ∂
∂µλ = O(1/N). In particular the single-trace contribution

in (2.2) is canceled when we add all the relevant Feynman diagrams. This is what happens

in orbifolds of N = 4 SYM. Twisted single-trace couplings cannot be generated in the

effective action, since they are charged under the quantum symmetry, while untwisted

single-trace couplings are not renormalized, since they behave as in the parent theory by

large N inheritance. However, neither argument applies to double-trace couplings of the

form f Og O†
g , where Og = Tr(gφ2) is a twisted single-trace operator of classical dimension

two.3 Such double-trace couplings will be generated in perturbation theory.

In this rest of this section, we analyze the general structure of double-trace

renormalization.

2.1 Double-trace renormalization to all orders

The beta function for the double-trace coupling (1.1) was computed at one loop in [10],

βf ≡ µ
∂

∂µ
f = v(1)f2 + 2γ(1)λf + a(1)λ2 . (2.4)

This result applies to any theory conformal in its single-trace sector. Here v(1) is the

normalization of the single-trace operator O ∼ Trφ2, defined as

〈O(x)Ō(y)〉 =
v(1)

2π2(x− y)4
. (2.5)

The quantity γ(1)λ is the one-loop contribution to the anomalous dimension of O from the

single-trace interactions. The double-trace interaction also contributes to the renormaliza-

tion of O, so that the full result for its one-loop anomalous dimension is

γO = γ(1)λ+ v(1)f . (2.6)

Some representative Feynman diagrams contributing to βf are shown in figure 3. Our goal

is to generalize these results to all orders in planar perturbation theory.

3 Here Tr = TrSU(|Γ|N) and g ∈ Γ.
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(a) (b) (c)

λ

λ

λ1/2λ1/2

f

λ

f

f

f

Figure 3. Sample diagrams contributing to βf at one loop: (a) v(1)f2 ; (b) 2γ(1)λf ; (c) a(1)λ2.

σ σ̄ σ

φ

φ

1
f −f

Figure 4. Feynman rules for (2.8).

2.1.1 The λ = 0 case

Let us first practice with the simple situation where the single-trace part of the action is

free.4 The total lagrangian is

L = Lfree
ST + LDT , LDT = f OŌ . (2.7)

The discussion of the large N theory is facilitated by a Hubbard-Stratonovich transforma-

tion. We introduce the auxiliary complex scalar field σ and write the equivalent form for

the double-trace interaction,5

LDT = −fσσ̄ + fσŌ + fσ̄O . (2.8)

The obvious Feynman rules are displayed in figure 4. The renormalization program is

carried out as usual, by adding to the tree-level lagrangian (2.8) local counterterms, which

we parametrize as

δLDT = −(Z2 − 1)fσσ̄ + (Z3 − 1)(fσŌ + fσ̄O) . (2.9)

The one-particle irreducible structures that may contain divergences are Γσσ̄, Γσφφ and

Γφφφφ. The quartic vertex Γφφφφ is in fact subleading in the large N limit, as illustrated in

figure 5 in a one-loop example. The leading contributions to the scalar four-point function

4 The calculation of βf for this case already appears in [24].
5For ease of notation we suppress possible flavor indices for O and σ.
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(a) (b)

Figure 5. Diagram (a) is leading at large N , of order O(1), but it is reducible. Diagram (b) is

irreducible but it is subleading at large N , of order O(1/N2).

contain cuttable σ propagators. This is an example of a general fact that we will use

repeatedly: 1PI diagrams with internal σ propagators are subleading for large N . Indeed,

adding internal σ lines increases the number of φ propagators, which are suppressed by 1/N .

The upshot is that while for finite N (2.8) is not renormalizable as written (we need

to add an explicit OŌ counterterm), for large N it is.

From the Feynman rules, we immediately find

Γσσ̄(x, y) = fZ2 δ(x− y) + Z2
3 f

2 〈O(x)Ō(y) 〉f=0 , (2.10)

Γσφφ(x; y, z) = −f Z3 〈O(x)φ(y)φ(z) 〉1PI
f=0 . (2.11)

Since we are assuming for now that the single-trace action is free, the f = 0 correlators ap-

pearing above are given by their tree-level expressions. The three-point function 〈Oφφ〉1PI
f=0

is simply a constant,

Γσφφ = −fZ3 · const . (2.12)

Clearly no renormalization of the σφφ vertex is needed and we can set Z3 = 1. On the

other hand, the two-point function

〈O(x)Ō(0)〉f=0 ≡ v

2π2x4
(2.13)

requires renormalization, since its short-distance behavior is too singular to admit a

Fourier transform. We adopt the elegant scheme of differential renormalization [27, 28].

The singularity is regulated by smearing the scalar propagator,

〈O(x)Ō(0)〉f=0 =
v

2π2

1

(x2 + ǫ2)2
, (2.14)

where ǫ is a short distance cutoff. Introducing a dimensionful constant µ, one may separate

out the divergence as follows,

v

2π2

1

(x2 + ǫ2)2
ǫ→0−→ − v

8π2
�

lnx2µ2

x2
− v lnµǫ δ(x) . (2.15)
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The first term is the renormalized two-point function: it is finite (Fourier transformable)

if one interprets the Laplacian as acting to the left under the integral sign. The constant

µ plays the role of the renormalization scale. Back in (2.10), we take the Z-factors to be

Z2 = 1 + vf log µǫ , Z3 = 1 , (2.16)

and find the renormalized correlator

Γσσ̄(x, y) = fδ(x− y) − vf2

8π2
�

lnµ2(x− y)2

(x− y)2
. (2.17)

We are now in the position to calculate βf and the anomalous dimension γO of the

single-trace operator.6 The renormalized two-point function satisfies the Callan-Symanzik

equation
[

µ
∂

∂µ
+ βf

∂

∂f
− 2γO

]

Γσσ̄ = 0 . (2.18)

Recalling the identity

µ
∂

∂µ

[

− 1

8π2
�

lnµ2x2

x2

]

= δ(x) , (2.19)

we see that the CS equation implies

2fβf − 2γOf
2 = 0 (2.20)

βf − 2γOf + vf2 = 0 , (2.21)

the first condition arising for x 6= y and the second from the delta function term.

Incidentally, the CS equation for Γσφφ, namely

[

µ
∂

∂µ
+ βf

∂

∂f
− γO − 2γφ

]

Γσφφ = 0 , γφ = 0 , (2.22)

immediately gives βf = fγO, equivalent to (2.20). Solving the linear system, we find

βf = vf2 , γO = vf . (2.23)

These are exact results (all orders in f) in the large N theory. The essential point, borne

out by the auxiliary field trick, is that the for λ = 0 the only primitively divergent diagram

is the one-loop renormalization of the σ propagator.

2.1.2 The general case

As we take λ 6= 0, we face the complication that the version of the theory with the auxiliary

field, equation (2.8), is not renormalizable as it stands, since an explicit quartic term OŌ
is regenerated by the interactions. We are led to consider the two-parameter theory

L(2)(g, h) ≡ LST − gσσ̄ + gσŌ + gσ̄O + hOŌ . (2.24)

6 Note that γO coincides with γσ, since connected correlation functions of σ are equal (for separated

points) to connected correlation functions of O.
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Comparing with the original form of the lagrangian without auxiliary field,

L(1)(f) ≡ LST + fOŌ , (2.25)

we have the equivalence

L(1)(g + h) ∼ L(2)(g, h) . (2.26)

(We leave implicit the dependence of L(1) and L(2) on the single-trace couplings λ and on

N .) Clearly,

βf (g + h) = βg(g, h) + βh(g, h) , (2.27)

where βf is the beta function for the coupling f in theory (2.25), and βg and βh are the

beta functions for the couplings g and h in theory (2.24). It may appear that not much is

gained by considering the more complicated lagrangian L(2)(g, h), but in fact the auxiliary

field trick still provides a useful reorganization of large N diagrammatics. Our strategy

is to work in the theory defined by L(2)(g, h), but in the limit that the renormalized

quartic coupling h→ 0.

We need not discuss explicitly the renormalization of the single-trace part of the action.

For large N , the 1PI diagrams that renormalize the couplings in LST(λ) are independent

of g, because leading diagrams at large N do not contain internal σ lines. Since we are

also taking h→ 0, this implies that the renormalization of LST(λ) proceeds independently

of L(2)
DT. We recall that by assumption, LST(λ) is such that βλ = 0 for large N .

To discuss the renormalization of L(2)
DT(g, h → 0), we parametrize the counterterms as

δL(2)
DT = −(Z2 − 1)gσσ̄ + (Z3 − 1)(gσŌ + gσ̄O) + (Z4 − 1)hOŌ . (2.28)

As we have emphasized, even for h → 0 a quartic counterterm (Z4 − 1)hOŌ is needed in

order to cancel the divergence of Γφφφφ. We can use again the fact that for large N , Γφφφφ

is independent of g (recall figure 5). Hence for h → 0 the quartic counterterm can only

depend on the single-trace coupling λ,

lim
h→0

(Z4 − 1)h = f(λ, ǫ, µ) . (2.29)

It follows that the corresponding beta function is only a function of λ,

βh(g, h = 0) = a(λ) . (2.30)

In orbifolds of N = 4 SYM, λ is the usual ’t Hooft coupling, and a(λ) has a perturbative

expansion of the form

a(λ) =
∞
∑

L=1

a(L)λL+1 , (2.31)

where L is the number of loops.

– 9 –
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The analysis of the two remaining primitively divergent structures, Γσσ̄ and Γσφφ,

proceeds similarly as in the λ = 0 case, with a few extra elements. We have (for h = 0),

Γσσ̄(x, y) = gZ2 δ(x− y) + Z2
3 g

2 〈O(x)Ō(y) 〉g=h=0 , (2.32)

Γσφφ(x; y, z) = −g Z3 〈O(x)φ(y)φ(z) 〉1PI
g=h=0 . (2.33)

From the last equation, we see that the factor Z3 has the role of renormalizing the composite

operator O in the theory with g = h = 0,

Oren
g=h=0 ≡ Z3(λ, µ, ǫ)O . (2.34)

The dependence of Oren
g=h=0 on the renormalization scale µ is given by

µ
∂

∂µ
Oren

g=h=0 = −γ(λ)Oren
g=h=0 , (2.35)

where γ(λ) is, by definition, the anomalous dimension of the single-trace operator in the

theory where we set to zero the double-trace couplings. The two-point function of Oren
g=h=0

takes then the standard form

〈Oren(x)Oren(0)〉g=h=0 =
v(λ)

2π2

µ−2γ(λ)

x4+2γ(λ)
, x 6= 0 . (2.36)

We have indicated that the normalization v will in general depend on λ. In orbifolds of

N = 4, v(λ) and γ(λ) have perturbative expansions of the form

v(λ) =
∞
∑

L=1

v(L)λL−1 , γ(λ) =
∞
∑

L=1

γ(L)λL . (2.37)

The expression (2.36) is not well-defined at short distance and needs further renormaliza-

tion, which we perform again in the differential renormalization scheme. We first expand

µ−2γ

x4+2γ
=

∞
∑

n=0

(−γ)n
n!

logn µ2x2

x4
, (2.38)

and then renormalize each term of the series using the substitutions [29]

logn µ2x2

x4
= −n!

4
�

n+1
∑

k=1

1

k!

logk µ2x2

x2
. (2.39)

These are exact identities for x 6= 0 and provide the required modification of the behavior

at x = 0, if one stipulates that free integration by parts is allowed under the integral sign.

Back in (2.32), we have7

Γσσ̄(x, 0) = gZ2 δ(x) + g2 〈Oren(x)Oren(0) 〉g=h=0 (2.40)

= g δ(x) − g2 v

8π2

∞
∑

n=0

(−γ)n �

n+1
∑

k=1

1

k!

logk(µ2x2)

x2
. (2.41)

7The value of Z2 is defined implicitly by this equation. As in the λ = 0 case, we could introduce a

short-distance cutoff ǫ and then choose Z2(ǫ, µ) such that the final result (2.41) for the fully renormalized

correlator is obtained.
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The CS equation,

[

µ
∂

∂µ
+ βg

∂

∂g
− 2γO

]

Γσσ̄ = 0 , (2.42)

gives as before two conditions, one for x 6= 0 and one from the delta function term. For

x 6= 0, we may simply use the naive expression (2.36) for the correlator, and we find

2gβg − 2γOg
2 − 2γg2 = 0 . (2.43)

It is easy to check that the same condition follows from the CS for Γσφφ. On the other

hand, terms proportional to δ(x) in (2.42) arise either from the explicit gδ(x) in Γσσ̄ , or

when the µ derivative hits the k = 1 terms of the series,

0 = βg − 2γOg + g2v

∞
∑

n=0

(−γ)n = βg − 2γOg +
g2v

1 + γ
. (2.44)

The solution of the linear system (2.43), (2.44) is

γO = γ +
vg

1 + γ
, βg =

vg2

1 + γ
+ 2gγ . (2.45)

We can finally evaluate βf in the original theory (2.25). From

βf (f) = βg(g = f, h = 0) + βh(f, h = 0) , (2.46)

we find

βf =
v(λ)

1 + γ(λ)
f2 + 2 γ(λ) f + a(λ) . (2.47)

This is the sought generalization of the one-loop result (2.4) originally found in [10]. The

expression for the full conformal dimension of the single-trace operator is

∆O = 2 + γO(f, λ) = 2 + γ(λ) +
v(λ)

1 + γ(λ)
f . (2.48)

The boxed equations are valid to all orders in large N perturbation theory.

3 Double-trace running and dynamical symmetry breaking

The beta function of the double-trace coupling remains quadratic in f , to all orders in

planar perturbation theory. This simplification allows to draw some general conclusions

about the behavior of the running coupling and the stability of the Coleman-Weinberg

potential. While the essential physics is already visible in the one-loop approximation, it

seems worthwhile to pursue a general analysis.

– 11 –



J
H
E
P
0
4
(
2
0
0
9
)
0
2
0

(a) D > 0 (b) D < 0

f+

f−

µ

µIR

µUV

f(µ)

f(µ)

Figure 6. The two qualitative behaviors of the running coupling f(µ) for D > 0 and D < 0.

3.1 Running coupling

We need to distinguish two cases, according to whether the quadratic equation

βf =
v(λ)

1 + γ(λ)
f2 + 2 γ(λ) f + a(λ) = 0 (3.1)

has real or complex zeros. We define the discriminant D(λ),

D(λ) ≡ γ(λ)2 − a(λ)v(λ)

1 + γ(λ)
, (3.2)

and the square root of |D|,

b(λ) ≡
√

|D(λ)| . (3.3)

From (2.31), (2.37), b(λ) has a perturbative expansion of the form

b(λ) = b(1)λ+ b(2)λ2 + . . . . (3.4)

• Positive discriminant

If D > 0, (3.1) has real solutions

f± = −γ
ṽ
± b

ṽ
, ṽ ≡ v

1 + γ
. (3.5)

In this case we can maintain conformal invariance in the quantum theory by tuning

f to one of the two fixed points. Since v > 0 (the two-point function of O is positive

by unitarity), we see that f− is UV stable and f+ IR stable. The differential equation

for the running coupling,

µ
∂

∂µ
f(µ) = βf (f(µ)) , (3.6)
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is easily solved to give

f(µ) =

(

µ
µ0

)2b
f− + f+

(

µ
µ0

)2b
+ 1

. (3.7)

The function f(µ) is plotted on the left in figure 6. The running coupling interpolates

smoothly between the IR and the UV fixed points.

• Negative discriminant

If D < 0 there are no fixed points for real f and conformal invariance is broken in

the quantum theory. The solution of (3.6) is

f(µ) = −γ
ṽ

+
b

ṽ
tan

[

b

ṽ
ln(µ/µ0)

]

, ṽ ≡ v

1 + γ
. (3.8)

There are Landau poles both in the UV and in the IR, at energies

µIR = µ0 exp

(

−πṽ
2b

)

∼= µ0 exp

(

− πv(1)

2b(1)λ

)

(3.9)

µUV = µ0 exp

(

πṽ

2b

)

∼= µ0 exp

(

πv(1)

2b(1)λ

)

. (3.10)

The behavior of f(µ) is plotted on the right in figure 6.

3.2 Effective potential

The running of the double-trace coupling f and the generation of a quantum effective

potential for the scalar fields are closely related. We wish to make this relation precise.

Let us consider a spacetime independent vev for the scalars,

〈φi b
a 〉 = ϕ T i b

a . (3.11)

We have picked some direction in field space specified by the tensor T i b
a , where i is a flavor

index and a, b = 1, . . . N are color indices. We need not assume that it is a classical flat

direction. With no loss of generality we take ϕ ≥ 0.

We now go through the textbook renormalization group analysis of the quantum ef-

fective potential V(ϕ). The RG equation reads

[

µ
∂

∂µ
+ βf

∂

∂f
− γφ ϕ

∂

∂ϕ

]

V(ϕ, µ, f, λ) = 0 , (3.12)

where γφ(λ) is the anomalous dimension of the scalar field φ. Note that for large N , γφ(λ)

is independent of f . Writing (3.12) as

V(ϕ, µ, f, λ) ≡ ϕ4 U(ϕ/µ, f, λ) ,

[

ϕ
∂

∂ϕ
− βf

1 + γφ

∂

∂f
+

4γφ

1 + γφ

]

U = 0 , (3.13)
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one finds that the most general solution takes the form

V(ϕ, µ, f, λ) = ϕ4

(

ϕ

µ

)−
4γφ

1+γφ

U0(f̂(ϕ), λ) , (3.14)

where f̂(µ) satisfies

µ
∂

∂µ
f̂(µ) =

βf (f̂)

1 + γφ
. (3.15)

In general, the arbitrary function U0(f̂ , λ) is found order by order by comparing with

explicit perturbative results. In our case, because of large N , the double-trace coupling

contributes to the effective potential only at tree-level. This is again a consequence of the

fact that 1PI diagrams with internal σ lines are suppressed. Moreover, by assumption the

single-trace quartic term NλTrφ4 is not renormalized at large N , so that the explicit λ

dependence of U0(f̂ , λ) is also exhausted by the tree-level contribution. There is of course

an implicit λ dependence in f̂ , as clear from (3.15), (2.47). The full tree-level contribution

to the effective potential is

Vtree(ϕ) = NλTrφ4 + f OŌ = N2(CSTλ+ CDTf)ϕ4 , (3.16)

where CST and CDT are some non-negative proportionality constants of order one.8 If the

vev is taken along a classical flat direction of the single-trace lagrangian, then CST = 0,

but we need not assume this is the case. Thus

U0(f̂ , λ) = N2(CSTλ+ CDTf̂) . (3.17)

The final result for the large N effective potential is

V(ϕ) = N2 µ
4γφ

1+γφ

[

CST λ+ CDT f̂(ϕ)
]

ϕ
4

1+γφ . (3.18)

Ordinarily, at a fixed order in perturbation theory the RG improved effective potential can

be trusted in the range of ϕ such that the running coupling f̂(ϕ) is small. In our case, V(ϕ)

receives no higher corrections in f̂ , so it appears that (3.18), being the full non-perturbative

answer, may have a broader validity.

Let us make contact with the explicit one-loop expression of the effective potential. To

this order,

ṽ(λ) ∼= v(1) , γ(λ) ∼= γ(1)λ , a(λ) ∼= a(1)λ2 , γφ
∼= γ

(1)
φ λ , (3.19)

and the expansion of (3.18) gives

V1−loop(ϕ) = (3.20)

N2ϕ4 log

(

ϕ

µ

)

·
[

v(1)f2CDT + 2fλ(γ(1) − 2γ
(1)
φ )CDT + λ2(a(1)CDT − 4γ

(1)
φ CST)

]

.

Each term has an obvious diagrammatic interpretation.

8We are suppressing flavor indices: NλTrφ4 in (3.16) is a shortcut for the scalar potential of the single-

trace lagrangian LST, which we require to be bounded from below. Then CST ≥ 0. On the other hand,

positivity of CDT is clear from (3.16), since OŌ is a positive quantity.
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3.3 Stability versus conformal invariance

Armed with the general form (3.18) of the large N effective potential, we can investigate

the stability of the symmetric vacuum at ϕ = 0. Since the single-trace coupling λ does not

run, we can treat it as an external parameter. For given λ, the functions a(λ), ṽ(λ), γ(λ)

and γφ(λ) are just constant parameters that enter the expression for V(ϕ).

The qualitative behavior of V(ϕ) is dictated by the discriminant D(λ). Compar-

ing (3.15) with (3.6), we see that f̂(ϕ) behaves just as f(ϕ), up to some trivial rescaling

of coefficients by 1/(1 + γφ). We consider again the two cases:

• Positive discriminant

For D > 0, the running coupling is given by

f̂(ϕ) =

(

ϕ
µ

)2b̂
f− + f+

(

ϕ
µ

)2b̂
+ 1

, b̂ ≡ b

1 + γφ
. (3.21)

The constant solutions f̂(ϕ) = f± are obtained as degenerate cases for µ → 0 and

µ → ∞. In the generic case, the effective potential is bounded by the two functions

(we set µ ≡ 1)

N2 (CSTλ+ CDTf+)ϕ
4

1+γφ ≤ V(ϕ) ≤ N2 (CSTλ+ CDTf−)ϕ
4

1+γφ , (3.22)

where the lower bound is attained for ϕ→ 0 and the upper bound for ϕ→ ∞. Recall

from (3.5) that f− < f+, with f− always negative. If

CSTλ+ CDTf+ > 0 , (3.23)

then ϕ = 0 is at least a local minimum, otherwise it is a global maximum and the

potential is unbounded from below. Condition (3.23) is simply the requirement that

the tree-level potential (3.16) be bounded from below when f is set to its IR fixed

point f+. If (3.23) holds, it is also permissible to simply pick the constant solution

f̂(ϕ) = f+. Then V is monotonically increasing and ϕ = 0 is the global minimum.

In the generic case (3.21), we need the stronger condition

CSTλ+ CDTf− > 0 (3.24)

to ensure that the potential is bounded from below. Then ϕ = 0 is the global

minimum.

In view of the comments below (3.18), we believe that this analysis has general

validity. It is certainly valid for λ≪ 1, since then f± ∼ λ+ O(λ2), and the effective

coupling f̂(ϕ) ≪ 1 for every value of ϕ.

In summary, barring pathological cases where the potential is unbounded from

below, for D > 0 the vacuum ϕ = 0 is stable and dynamical symmetry breaking

does not occur.
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• Negative discriminant

If D < 0, the effective potential reads, in units µ ≡ 1,

V(ϕ) = N2
[

CSTλ+ CDTf̂(ϕ)
]

ϕ
4

1+γφ , f̂(ϕ) = −γ
ṽ

+
b

ṽ
tan

(

b

ṽ
logϕ

)

. (3.25)

The theory only makes sense as an effective field theory for energy scales intermediate

between the two Landau poles, µIR = e−
π
2b ≪ ϕ ≪ µUV = e+

π
2b . The potential

ranges between minus infinity at µIR and plus infinity at µUV. A little algebra

shows that V(ϕ) is either a monotonically increasing function, or it admits a local

maximum and a local minimum. Local extrema exist if

λ
CST

CDT
− γ

ṽ
<

1

1 + γφ
− b2(1 + γφ)

4ṽ2
, (3.26)

with the potential always negative at the local minimum,

V(ϕmin) < 0 . (3.27)

From (3.19), (3.3), we see that (3.26) is always obeyed for sufficiently small λ. The

value of the running coupling at the minimum can be expanded for λ≪ 1,

f̂(ϕmin) = −αλ+

(

− a(1)

4
+ γ

(1)
φ α− v(1)

4
α2

)

λ2 +O(λ3) , α ≡ CST

CDT
. (3.28)

For small λ, f̂(ϕmin) is also small, the local minimum can be trusted, and dynamical

symmetry breaking occurs. If the vev is taken along a flat direction for the

single-trace potential, namely if CST = 0, then the double-trace coupling at the new

vacuum is of order O(λ2), which is perhaps the more familiar behavior — as in the

original analysis of massless scalar electrodynamics [30]. From (3.26), (3.27), (3.28),

we find that for small λ symmetry breaking occurs even if the tree level single-trace

potential does not vanish (CST 6= 0).

We take the liberty to belabor this conclusion, giving an alternative derivation. One

can first expand the effective potential to lowest non-trivial order,

V(ϕ) ∼= N2[CSTλ+ CDTf̂(µ)] + V1−loop(ϕ) , (3.29)

with V1−loop given by (3.20). In looking for the minimum, V ′(ϕmin) = 0, V ′′(ϕmin) >

0, it is convenient to set the renormalization scale µ ≡ ϕmin. Then we just solve for

f̂(ϕmin) and easily reproduce (3.28). This is a consistent procedure provided we can find

a renormalization trajectory where f̂(ϕmin) takes the value (3.28). A glance at figure 6

shows that yes, we can set f̂ to any prescribed value. Finally, since (3.28) happens to be

small for λ small, the whole analysis can be trusted in perturbation theory.

The inequality (3.26) can be satisfied also if λ is of order one, in which case f̂(ϕ) is

of order one. In view of our remarks about the non-perturbative validity of V(ϕ), it seems

plausible that the local minimum can also be trusted in this case.
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4 AdS/CFT

We have used standard field theory arguments to characterize the two possible behaviors for

a large N theory conformal in its single-trace sector. Either all double-trace beta functions

admit real zeros, and then the symmetric vacuum is stable and conformal invariance is

preserved; or at least one beta function has no real solutions, and then conformal invariance

is broken and dynamical symmetry breaking occurs.

We now give a reinterpretation of these results in light of the AdS/CFT correspon-

dence. Even for negative discriminant, we insist in solving for the zeros of the double-trace

beta function,

f± = −γ
ṽ
±

√
D

ṽ
. (4.1)

Setting f = f±, the full conformal dimension (2.48) of the single-trace operator O reads

∆O = 2 + γ + ṽf± = 2 + γ − γ ±
√
D = 2 ±

√
D . (4.2)

So at the fixed point, the anomalous dimension of O is either real if D > 0 or purely

imaginary if D < 0. This is just as expected from the AdS/CFT formula

∆O =
d

2
±
√

d2

4
+m2R2 = 2 ±

√

4 +m2R2 , (4.3)

where m is the mass of the AdS5 scalar field dual to O, if we identify

m2(λ)R2 = m2
BFR

2 +D(λ) = −4 +D(λ) . (4.4)

For D > 0, we are in the standard situation of real coupling constant, real anomalous

dimension and dual scalar mass above the stability bound, m2 > m2
BF. We propose to

take (4.4) at face value even when D < 0. If m2 < m2
BF, the AdS bulk vacuum is unstable.

Similarly, if D < 0, the field theory conformal-invariant vacuum is unstable. Equation (4.4)

gives the precise relation between the two instabilities. The proper treatment of both the

bulk and the boundary theory would be to expand around the stable minimum. But in

stating that the AdS scalar has a certain mass m2 < m2
BF, we are implicitly quantizing

the bulk theory in an AdS invariant way. The dual statement is to formally quantize the

boundary theory in a conformal invariant way, around the symmetric minimum ϕ = 0, by

tuning the coupling to the complex fixed point f = f+ (or f−). At either fixed point, the

operator dimension is complex,

∆O = 2 ± i b . (4.5)

The discriminant D(λ) = γ(λ)2−a(λ)ṽ(λ) is a purely field-theoretic quantity. In prin-

ciple (4.4) is a prescription to compute the tachyon mass from the field theory, at least order

by order in perturbation theory. It would be interesting to see if integrability techniques [31]

are applicable to this problem, though the fact that O is a “short” operator may represent

a challenge. For now we may compare field theory results at weak coupling with the strong

coupling behavior predicted by the gravity side. Let us look at a couple of examples.
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4.1 Two examples

Expanding (4.4) to one-loop order,

m2(λ)R2 = −4 +D(λ) = −4 +
[

(γ(1))2 − a(1)v(1)
]

λ2 +O(λ3) . (4.6)

The coefficients v(1), γ(1), and a(1) were computed in [10, 11] for several orbifolds of N = 4

SYM. Obtaining the corresponding m2 is an exercise in arithmetic.

As a first illustration, take the Z2 orbifold theory that arises on a stack of N electric

and N magnetic D3 branes of Type 0B string theory. There are twisted scalars in the 20′

and 1 representations of SU(4)R. From the results in [10, 13], one finds

m2
20′R2 ∼= −4 − λ2

8π4
+O(λ3) , m2

1R
2 ∼= −4 − 23λ2

64π4
+O(λ3) . (4.7)

Since this orbifold has fixed points on the S5 (it fixes the whole sphere), we expect these

masses to remain negative below the stability bound for all λ, with the asymptotic behavior

m2(λ)R2 ∼ −R
2

α′
= −λ1/2 , λ→ ∞ . (4.8)

Let us also consider a simple class of non-supersymmetric freely acting orbifold, Zk orbifold

with SU(3) global symmetry [10]. The Zk action is

zi → ω n
k zi , ωk ≡ e

2πi
k , n = 1, . . . k , (4.9)

where zi, i = 1, 2, 3 are the three complex coordinates of R
6 = C

3. The orbifold is freely

acting for k odd, and breaks supersymmetry for k > 3. Let us focus on the Z5 case.

There are twisted operators O8,n O1,n, with n = 1, 2, in the octet and singlet of the SU(3)

flavor group. It turns out that in the one-loop approximation the n = 1 operators have

positive discriminant, while the n = 2 operators have negative discriminant. From the

results of [10], one calculates

m2
8,2R

2 ∼= −4 −
√

5 − 1

640π4
λ2 +O(λ3) , m2

1,2R
2 ∼= −4 − 7

√
5 − 1

1600π4
λ2 +O(λ3) . (4.10)

The conjectural behavior of m2(λ) for freely acting orbifolds is plotted in figure 1 in the

introduction. The one-loop calculation (4.10) gives the second derivative at λ = 0. For

large λ, these states correspond to highly stretched strings on the S5. The asymptotic

behavior should thus be

m2(λ)R2 ∼ R4

α′2
∼ λ , λ→ ∞ . (4.11)

Figure 1 plots the simplest interpolation between the small and large λ limits. It would

be very interesting to compute the O(λ3) corrections to (4.10): this picture suggests that

they should be positive.
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4.2 Classical flat directions and instability

The Z2k+1 freely-acting orbifolds serve as an illustration of another point – classical flat

directions are immaterial in our context. The classical moduli space of the theory is

(C3/Z2k+1)
N/SN . In the brane picture this corresponds to the positions of the N D3

branes on the orbifold space C
3/Z2k+1. The flat directions are parametrized by vevs for

the bifundamental scalars (there are no adjoints). Along the flat directions, all twisted

operators have zero vev.

As emphasized in [9], this is the case in general for freely acting orbifolds: they have

no adjoint scalars and hence no classical branch along which the twisted operators could

develop a vev. However, this does not imply that the symmetric vacuum is stable. On the

contrary, we have seen in section 3.3 that dynamical symmetry breaking occurs at small

coupling wheneverD < 0, irrespective of the classical potential. Since one can always find a

double-trace coupling with D < 0, whether the orbifold is freely acting or not [11], we con-

clude that freely acting orbifolds also have a CW instability which drives into condensation

a twisted operator, 〈O〉 6= 0. The instability occurs away from the flat directions.

This reconciles the proposal of [10], which relates bulk tachyons with the breaking of

conformal invariance, with the general viewpoint of [9], which relates them to the Coleman-

Weinberg instability. A detailed analysis of the CW instability in some examples of freely

acting orbifolds has been pursued by [32].

5 Discussion

The logarithmic running of double-trace couplings fOŌ, where O ∼ Trφ2, is a general

feature of large N field theories that contain scalar fields. In this paper we have studied

the renormalization of double-trace couplings in theories that have vanishing single-trace

beta functions at large N . We have derived general expressions for the double-trace beta

function βf , the conformal dimension ∆O and the effective potential V(ϕ). The main point

is that βf is a quadratic function of f (and ∆O a linear function of f), to all-orders in

planar perturbation theory, with coefficients that depend on the single-trace couplings λ.

Double-trace running plays an important role in non-supersymmetric examples of

the AdS/CFT correspondence. We have related the discriminant D(λ) of βf to the mass

m2(λ) of the bulk scalar dual to the single-trace operator O. If D(λ) < 0, the bulk

scalar is a tachyon; on the field theory side, conformal invariance is broken and dynamical

symmetry breaking occurs.

The authors of [11] considered orbifolds of N = 4 SYM, realized as the low energy

limit of the theory on N D3 branes at the tip of the cone R
6/Γ. They found a one-to-

one correspondence between double-trace couplings with negative discriminant and twisted

tachyons in the tree-level spectrum of the type IIB background before the decoupling limit,

namely R
3,1×R

6/Γ. (Note that these flat-space tachyons are conceptually distinct from the

tachyons in the curved AdS5×S5/Γ background that have been the focus of this paper.)9 It

9The correspondence between twisted sector tachyons and field theory instabilities was first observed

in [33] in the context of non-commutative field theory.
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turns out that for all non-supersymmetric examples in this class, at least one double-trace

coupling has negative discriminant, and conformal invariance is broken.

It will be interesting to investigate more general constructions to see if conformal exam-

ples exist, both as a question of principle and in view of phenomenological applications.10

One possibility, suggested by the correspondence found in [11], is to add discrete torsion in

a way that removes the tree-level tachyons [36]. Another is to add appropriate orientifold

planes. A promising candidate for a conformal orientifold theory is the U(N) gauge theory

with six scalars in the adjoint and four Dirac fermions in the antisymmetric representation

of the gauge group [37].

Another important question, which is being investigated by [32], is to analyze the IR

fate of non-supersymmetric orbifolds of N = 4 SYM, by expanding their lagrangian around

the local minimum of the effective potential. This is a well-posed field theory problem

because the minimum can be trusted for small coupling. It would also be very interesting to

extend the calculations of [10, 11] to two loops. At one-loop, there is no obvious distinction

between freely acting and non-freely acting examples. This distinction may arise at two

loops, with the freely acting cases beginning to show the behavior of figure 1.

Finally, it would be nice to find a more detailed AdS interpretation for the individual

terms appearing in the double-trace beta function. For λ = 0, when only the term vf2 is

present, βf can be reproduced by a simple bulk calculation [24], using the interpretation [24,

25] of the double-trace deformation as a mixed boundary condition for the bulk scalar.

There should be a bulk interpretation for the other terms of βf as well, in particular for

the coefficient a(λ) which drives the instability.
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